1988 Semester 1 Multiple Choice

- 1. If $y = x^2 e^x$, then $\frac{dy}{dx} =$
 - (A) $2xe^x$

(B) $x(x+2e^x)$

(C) $xe^x(x+2)$

(D) $2x+e^x$

- (E) 2x+e
- 4. The graph of $y = \frac{-5}{x-2}$ is concave downward for all values of x such that
 - (A) x < 0
- (B) x < 2
- (C) x < 5 (D) x > 0

- 6. If $y = \frac{\ln x}{x}$, then $\frac{dy}{dx} =$
- (A) $\frac{1}{r}$ (B) $\frac{1}{r^2}$ (C) $\frac{\ln x 1}{r^2}$ (D) $\frac{1 \ln x}{r^2}$ (E) $\frac{1 + \ln x}{r^2}$

- 8. The graph of y = f(x) is shown in the figure above. On which of the following intervals are $\frac{dy}{dx} > 0$ and $\frac{d^2y}{dx^2} < 0$?
 - I. a < x < b
 - II. b < x < c
 - III. c < x < d
 - (A) I only
- (B) II only
- (C) III only
- (D) I and II
- (E) II and III

- 9. If $x+2xy-y^2=2$, then at the point (1,1), $\frac{dy}{dx}$ is
 - (A) $\frac{3}{2}$ (B) $\frac{1}{2}$ (C) 0 (D) $-\frac{3}{2}$

- (E) nonexistent

- 11. An equation of the line tangent to the graph of $f(x) = x(1-2x)^3$ at the point (1,-1) is
 - (A) y = -7x + 6

(B) y = -6x + 5

(C) y = -2x + 1

(D) y = 2x - 3

- (E) y = 7x 8
- 12. If $f(x) = \sin x$, then $f'\left(\frac{\pi}{3}\right) =$
 - (A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$

- 15. If $f(x) = \sqrt{2x}$, then f'(2) =
- (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{\sqrt{2}}{2}$
- (D) 1
- (E) $\sqrt{2}$
- 16. A particle moves along the x-axis so that at any time $t \ge 0$ its position is given by $x(t) = t^3 - 3t^2 - 9t + 1$. For what values of t is the particle at rest?
 - (A) No values
- (B) 1 only
- (C) 3 only
- (D) 5 only
- (E) 1 and 3

- 18. If $y = 2\cos\left(\frac{x}{2}\right)$, then $\frac{d^2y}{dx^2}$

- (A) $-8\cos\left(\frac{x}{2}\right)$ (B) $-2\cos\left(\frac{x}{2}\right)$ (C) $-\sin\left(\frac{x}{2}\right)$ (D) $-\cos\left(\frac{x}{2}\right)$ (E) $-\frac{1}{2}\cos\left(\frac{x}{2}\right)$
- 20. Let f be a polynomial function with degree greater than 2. If $a \ne b$ and f(a) = f(b) = 1, which of the following must be true for at least one value of x between a and b?
 - f(x) = 0
 - f'(x) = 0
 - f''(x) = 0
 - (A) None
- (B) I only
- (C) II only
- (D) I and II only
- (E) I, II, and III

- 24. $\frac{d}{dx}(x^{\ln x}) =$
 - (A) $x^{\ln x}$ (B) $(\ln x)^x$ (C) $\frac{2}{x}(\ln x)(x^{\ln x})$ (D) $(\ln x)(x^{\ln x-1})$ (E) $2(\ln x)(x^{\ln x})$

- 27. At x = 3, the function given by $f(x) = \begin{cases} x^2, & x < 3 \\ 6x 9, & x \ge 3 \end{cases}$ is
 - (A) undefined.
 - continuous but not differentiable.
 - differentiable but not continuous.
 - neither continuous nor differentiable.
 - both continuous and differentiable.
- 29. The $\lim_{h\to 0} \frac{\tan 3(x+h) \tan 3x}{h}$ is
 - (A) 0
- (B) $3\sec^2(3x)$ (C) $\sec^2(3x)$ (D) $3\cot(3x)$ (E) nonexistent

- 33. The absolute maximum value of $f(x) = x^3 3x^2 + 12$ on the closed interval [-2,4] occurs at x =
 - (A) 4
- (B) 2
- (C) 1
- (D) 0
- (E) -2

- 40. The sides of the rectangle above increase in such a way that $\frac{dz}{dt} = 1$ and $\frac{dx}{dt} = 3\frac{dy}{dt}$. At the instant when x = 4 and y = 3, what is the value of $\frac{dx}{dt}$?
 - (A) $\frac{1}{3}$
- (B) 1 (C) 2 (D) $\sqrt{5}$ (E) 5

- 41. If $\lim_{x\to 3} f(x) = 7$, which of the following must be true?
 - I. f is continuous at x = 3.
 - II. f is differentiable at x = 3.
 - III. f(3) = 7
 - (A) None

(B) II only

(C) III only

(D) I and III only

(E) I, II, and III

- 42. The graph of which of the following equations has y = 1 as an asymptote?
 - (A) $y = \ln x$

- (B) $y = \sin x$ (C) $y = \frac{x}{x+1}$ (D) $y = \frac{x^2}{x-1}$ (E) $y = e^{-x}$
- 45. The volume of a cylindrical tin can with a top and a bottom is to be 16π cubic inches. If a minimum amount of tin is to be used to construct the can, what must be the height, in inches, of the can?
 - (A) $2\sqrt[3]{2}$ (B) $2\sqrt{2}$ (C) $2\sqrt[3]{4}$
- (D) 4
- (E) 8